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11 The presently favoured concept for the early evolution of the Moon involves

12 consolidation of debris from a giant impact of a Mars sized body with Earth

13 forming a primitive Moon with a thick global layer of melt referred to as the

14 Lunar Magma Ocean 1 . It is widely accepted that many significant features

15 observed on the Moon today are the result of crystallisation of this magma ocean.

16 However, controversy exists over the precise timing and duration of the

17 crystallisation process. Resolution of this problem depends on the establishment

18 of precise and robust key crystallisation time points. We report a 4417±6 Myr

19 old zircon in lunar breccia sample 72215,195, which provides a precisely

20 determined younger limit for the solidification of the Lunar Magma Ocean. A

21 model based on these data, together with the age of the Moon forming giant

22 impact, defines an exponential time frame for crystallisation and suggests

23 formation of anorthositic crust after about 80-85% of the magma ocean was

24 solidified. In combination with other zircon ages the 4417 ± 6 Myr age also



25 suggests that the very small (less than a few per cent) residual portion of the

26 magma ocean continued to solidify during the following 300-500 m.y.

27
	

Fractional crystallisation of the Lunar Magma Ocean (LMO) involved the

28 early density-driven separation of mafic cumulates and flotation of a plagioclase-rich

29
	

lunar crust represented by ferroan-anorthosite1 . Subsequent crystallisation of ilmenite

30 from the remaining portion of the LMO 1 left a residual liquid enriched in highly

31
	

incompatible elements. This liquid formed the enriched reservoir referred to as

32 urKREEP (from high concentrations of K, REE, and P)2.

33
	

A precise determination of the timing of fractional crystallisation of the LMO

34 has been inhibited by the susceptibility of Sm-Nd and other systems to the partial

35 resetting during the later thermal pulses associated with the meteorite impacts. As a

36 result, the Sm-Nd mineral isochrons constrained for the ferroan-anorthosite samples

37 show wide spread of ages between 4.56±0.07 Byr (Ref. 3) and 4.29±0.06 Byr (Ref. 4).

38 The best estimate for the age of ferroan anorthosites determined as 4456±40 Myr from

39 the combination of mafic minerals in all analysed samples but excluding plagioclase

40 data that are partially disturbed5 has another inherited problem as it assumes that all

41 samples have been formed at the same time.

42
	

Another way that has been used to constrain the timing of the LMO

43
	

differentiation is via model ages of rocks derived from different reservoirs in the lunar

44 mantle. In particular, a KREEP-rich source is recognised as an essential part of late

45 stage crystallisation of the LMO, and model ages of urKREEP formation have been

46 estimated as ~4.6 Byr by Rb-Sr analysis of lunar soils 6, ~4.42 Byr from U-Pb

47 systematics of highlands rocks and a basalt sample7 and ~4.36 Byr from the Sm-Nd

48 model ages of KREEP samples 8 . An average of model age for KREEP was estimated

49 as 4.42±0.07 Byr (1 ı uncertainty)9. Recent W isotope data on metals from low and
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high-Ti mare basalts as well as two KREEP-rich samples 10 suggest that the last

equilibration of the LMO, which is only possible up to a critical point when about

60% of the melt is solidified, occurred after 4507 Myr (60 m.y. after formation of the

Solar System). This result is in agreement with 146Sm- 142Nd model age of the LMO 10 ,

which is based on the combined 147Sm- 143Nd and 146Sm- 142Nd systems in lunar basalts

and implies a 23 8 16 m .y. (Ref. 11) to 21 5 m.y. (Ref. 12) time interval for lunar−40

mantle formation. Despite the general agreement between the model ages determined

using different isotope systems their accuracy is limited by the models and the timing

of LMO remains loosely constrained to the first 250 m.y. of lunar history.

Both isotopic resetting and model dependence problems associated with

numerous previous attempts to place limits on the time of LMO crystallisation can be

avoided by using U-Pb system in zircon 13, 14
, which is well known for its stability

under a variety of extreme conditions. Growth of zircon in melts is governed by

zircon saturation, which can only be achieved in a mafic magma initially enriched in

Zr (Ref. 15). Consequently, the presence of zircon in the lunar samples is linked to the

initial enrichment of the magma in the KREEP component (i.e., urKREEP must form

on the Moon before zircon can appear in any rock type). Therefore, the oldest zircon

defines a younger limit for the time of urKREEP formation.

Here we report the oldest zircon crystal found on the Moon so far, which is

located in the matrix of Apollo 17 clast-rich impact melt breccia 72215, in the thin

section 72215, 195. The 0.5 mm grain lacks well developed crystal faces and contains

several brittle fractures (Fig. 1), and we thus consider it to be a relict fragment of a

larger grain that was incorporated into the host breccia.

Forty one SIMS U-Pb analyses were made on this grain (Tab. 1, Fig. 2a). The

results indicate a complex pattern of isotope resetting that systematically varies with



75
	

the microstructural features of the grain (Tab. 1; Fig. 1). These microstructural

76 features are a combination of primary magmatic characteristics and different degree of

77 self-irradiation damage highlighted by the variable birefringence and

78 cathodoluminescence (CL) emission, as well as deformation patterns revealed by

79 crystallographic orientation analysis of electron backscatter diffraction (EBSD)

80 patterns. The observed overall decrease in 207Pb/206Pb ages correlated with an increase

81
	

of the local misorientation determined for each SHRIMP spot 16 (Fig. 2b), indicates

82 that this differential resetting of U-Pb system occurred as a result of impact-related

83
	

plastic deformation, an interpretation that is consistent with trace element variations

84 recorded in other deformed zircons 16, 17

85
	

All 41 U-Pb analyses are distributed along concordia between 4418±8 and

86 4331±16 Myr (uncertainties are 2a) (Fig. 2a). The four oldest analyses, from

87 undeformed parts of the grain, form a coherent group on a concordia plot (Fig. 2a)

88 with concordia intercept at 4420±15 Myr and an average 207Pb/206Pb age of 4417±6

89 Myr. We interpret this age as the age of zircon crystallisation. The five youngest

90 analyses form a coherent group in the 207Pb/206Pb vs. 238U/206Pb diagram (Fig. 2a),

91 defining a concordia intercept age of 4334±10 Myr for the common Pb uncorrected

92 data and average 207Pb/206Pb age of 4333±7 Myr for the Stacey-Kramers modern Pb

93 corrected data. These analyses correspond to areas of moderate luminescence, good

94 EBSD pattern quality and low U and Th concentrations (Fig. 1). Importantly, these

95 analyses are also from areas where the deformation bands intersect and/or have high

96 misorientation, suggesting deformation-related Pb-loss. It is evident that the most

97 deformed areas of the grain have suffered the greatest Pb loss, and we interpret the

98 concordia intersection age as a reflection of mobility of the U-Pb system in the grain

99 during an impact, although the resetting can be incomplete. The remaining



100 intermediate ages are from areas of moderately-strained parts of the grain, and likely

101
	

reflect a partial resetting of U-Pb system.

102
	

Our results indicate that the urKREEP source formed by 4417±6 Myr and it

103 follows that crystallisation of the LMO was almost completed by this time. The zircon

104 age is almost 100 Ma older than the age calculated from combined 142Nd- 143Nd

105
	

systematics of lunar basalts and highland rocks 11, 12
.
 These later estimates, however,

106 are based on the assumption that the separate mantle reservoirs have been formed at

107 the same time and had similar initial isotopic compositions of Nd. This may not be the

108 case, even for KREEP magmas and the source of high-Ti basalts. Both formed last in

109 the LMO crystallisation sequence and largely define the slope of combined 142Nd-

110 143Nd isochrones. Nevertheless, the formation of urKREEP source at 4417±6 Myr is

111 in agreement with the age of 4456±40 Myr determined for the ferroan anorthosite

112 samples5, even though the ages are not completely resolved within the errors.

113
	

A combination of the urKREEP minimum formation age of 4417±6 Myr and

114 other data reflecting different stages of LMO evolution allows us to model the history

115 of magma ocean differentiation and crystallisation on the Moon, and two end-

116 members are presented (Fig. 3). Both models are constrained by the new 4417±6 Myr

117 zircon age, defining a minimum age for formation of Lunar urKREEP at a late stage

118 in the crystallisation of the LMO. Both are also based on the assumption that the

119 LMO formed as a result of fast accretion following the giant impact 1 and, therefore,

120 the age of LMO formation is similar to the age of the Moon. The best current estimate

121
	

of the age of the giant impact based on the Hf-W data is 62 m.y. after the

122 formation of the Solar System10. These data place an older limit of LMO formation of

123
	

50 m.y. after the first condensation in the Solar Nebula (i.e. 4517 Myr). A simple

124 model of LMO evolution (Fig.3, solid line) suggests a sequential fractionation of



125 olivine - orthopyroxene ± olivine - olivine + clinopyroxene ± plagioclase -

126 clinopyroxene + plagioclase - clinopyroxene + plagioclase + ilmenite assemblages.

127 However, the assumption of sequential fractionation of mineral phases throughout the

128 whole LMO is probably an oversimplification because it is likely that: (i) a significant

129 temperature difference would exist between the lower and upper parts of the LMO;

130 (ii) the appearance of different minerals on the liquidus is unlikely to be

131
	

contemporaneous in different parts of the magma ocean; (iii) convection can prevent

132 effective removal of minerals from the liquid; and (iv) the formation of an insulation

133 lid can change cooling regime of the LMO. A more complex models of LMO

134
	

crystallisation (Fig. 3, dashed line) involves rapid initial cooling of the magma ocean

135
	

as a result of vigorous turbulent convection 18, which results in solidification of

136 substantial proportion of LMO without significant fractionation. This was followed by

137 fractionation limited to the relatively thin top layer of the LMO due to much slower

138 cooling resulting from a less vigorous convection regime, and possibly formation of a

139
	

thermally insulating surface lid.

140
	

Nevertheless, both models combined with the available chronological data

141 suggest that ilmenite bearing cumulates precipitated after about 90% of LMO

142 crystallisation, leaving a few percent of residual KREEP melt by 4417±6 Myr. These

143 data suggest that the main volume of the LMO solidified within about 100 m.y. The

144 age distribution patterns obtained for numerous zircon grains from Apollo 17 and 14

145 breccias 14 suggest that the residual small volume fraction of the LMO liquid could

146 have cooled slowly over the subsequent 400 to 500 m.y., probably sustained by the

147
	

internal heating related to radioactive decay. These patterns indicate gradual shrinking

148 of a semi-molten KREEP reservoir towards the centre of Procellarum KREEP

149 terrane14, and that by about 4.25 Byr the KREEP reservoir solidified under the area



150 occupied by the Serenitatis basin, but continued to be active closer to the middle of

151 Procellarum KREEP terrane near the Imbrium basin until about 3.90 Byr ago.

152 Assuming that the thickness of the KREEP source is approximately constant

153	 throughout the Procellarum terrane, this accounts for an additional reduction in the

154 residual proportion of KREEP melt of about 50% by 4.25 Byr.

155	 Despite the precise fixation of the timing of the last stage of LMO

156	 crystallisation by our results, the timing of plagioclase appearance in the

157 crystallisation sequence remains imprecise. Estimates for the appearance of

158 plagioclase on the liquidus vary from about 60% to 80% of LMO crystallisation,

159 depending on the assumed bulk Al content of the LMO 19, 20. Assuming sequential

160	 crystallisation of minerals (Fig. 3, solid line) and using available geochronological

161	 data for the ferroan anorthosite samples, 70% of crystallisation of LMO is necessary

162 before plagioclase can become a liquidus phase. In the more complex model (Fig. 3,

163 dashed line), the lunar crust formed after crystallisation of 80-85% of the LMO.

164 However, both estimates are within the uncertainties associated with the relatively

165	 imprecise estimate of age of the ferroan anorthosites. The large uncertainty of these

166 age also results in the large range (anywere between 20 and 100 my) for the possible

167 duration of plagioclase flotation. As a result, further refinement of the models awaits

168 more precise determination of the age of Lunar anorthosite formation.

169

170	 (1995 words)

171

172 Methods summary

173 The sample is a polished thin section of breccia 72215 prepared by NASA. The

174 microstructure of the zircon was characterized by SEM-based cathodoluminescence



175 imaging and electron backscatter diffraction (EBSD) mapping using the facilities at

176 Curtin University of Technology, Perth, Western Australia. Collection of EBSD data

177 was processed using the procedures optimised for zircon21 . Slip systems were

178 resolved from crystallographic orientation data using simple geometric models of

179	 low-angle boundaries 17 .

180 U-Pb data were obtained using Sensitive High Resolution Ion Microprobe (SHRIMP)

181 at the John de Laeter Centre of Mass Spectrometry, Curtin University of Technology

182 following the standard analytical procedure described elsewhere 13 . Pb-U ratios were

183 normalised to the 564 Ma Sri-Lankan zircon CZ3 analysed in a separate mount.

184 Common Pb was corrected using modern Stacey and Kramers lead, following the

185 conclusion that substantial proportion of common Pb in the lunar thin sections results

186 from the surface contamination 14
. Regardless, of the selection of common Pb for the

187	 correction, very low proportion of 204Pb in the thin section 72215,195 makes the

188 calculated ages insensitive to the uncertainty in the common Pb.

189 (176 words)
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279 Figure captions

280 Figure 1. Microstructure of the zircon grain from lunar breccia 72215,195. (a)

281
	

Optical photomicrograph, cross polarised light showing sector zones and faint

282 compositional growth zones (inset i); (b) panchromatic CL image with superimposed

283 mean U-Pb ages for individual SHRIMP analyses; (c) Map showing variations in

284 EBSD pattern quality (band contrast) from poor (black) to good (white); (d) Map

285 derived from EBSD data showing variations in crystallographic orientation relative to

286 the mean reference orientation (red cross).

287

288 Figure 2. U-Pb SHRIMP data for the zircon from the breccia thin section

289 72215,195. a, Tera-Wasserburg concordia diagram. Data are not corrected for the

290
	

initial Pb. Blue ellipses represent the four oldest analyses; red ellipses represent the

291
	

five youngest analyses; yellow ellipses represent analyses with intermediate U-Pb

292 ages. b, Age vs. 'local misorientation' value determined at each SHRIMP spot from

293 EBSD map data by calculating the mean misorientation between a central point and

294
	

its nearest neighbours on an 1 1x1 1 pixel grid (i.e., 13.2x13.2 jtm area)16 . Local

295 misorientation data were normalised to alpha dose to account for the radiation

296 damage. The resultant local misorientation values are interpreted to reflect lattice

297
	

distortions associated with crystal-plastic deformation.

298



299 Figure 3. LMO crystallisation paths based on the available chronological data.

300 Solid line projected through the points representing 1) initial formation (100% melt –

301	 182W age 10), 2) mean time of lunar crust formation (30% melt – 143Nd age5) 3) KREEP

302 formation (5-7% melt – age from this study), 4) time of cessation of magmatic activity

303	 in the Serenitatis region (2.5-3.5% melt – age estimate from zircon distribution

304 patterns 14); dotted line based on 1) and 2) and the assumption of a turbulent

305	 convection in the LMO resulting in the fast initial cooling, yellow circle represents

306 predicted formation of the lunar crust compatible with such fast cooling of the LMO.

307



Figure 1



Figure 2
data-point error 

Intercept: 4420±15 Maellipses are 2 s

	

0.59	 MSWD = 0.11; Probability = 0.90

a	 207Pb/206Pb Age = 4417±6 Ma
4460MSWD = 0.08; Probability = 0.97

.0 0.57
0

Ift-

(0
0

.	 0.55
0
0

0.53

Intercept: 4334±10 Ma
MSWD = 0.08; Probability = 0.97 4300
207Pb/206Pb Age = 4333±7 Ma
MSWD = 0.05; Probability = 0.99 1.02	 1.06	 1.10

238 U/ 206Pb

error bars are 2 c

	

4420
	 b

II

4380
0

to
0

4340
0

1-
0

4300
0	 10	 20	 30	 40	 50

Local misorientation (Degrees) / Alpha dose (x1 010)



Figure 3
int error crosses are 2 s

100

D) 80

•M	 60
E

40

20

0

Oldest
limit for Pl
appearence

Youngest limit for
Ol-Px cumulates

'1
Ilm cumulate

KRF

4500	 4400	 4300
	

4200

Age (my)



SUPPLEMENTARY MATERIALS

Methods

Cathodoluminescence

The panchromatic cathodoluminescence (CL) image was collected using a KE Developments CL

system attached to a Philips XL30 SEM at the Microstructural Analysis Facility, Curtin University

of Technology, Perth, Western Australia. Operating conditions were 1 2kV accelerating voltage and

working distance of 15mm. The detector sensitivity is in the 330-600nm spectral range.

Electron backscatter diffraction (EBSD)

Prior to EBSD analysis, the sample was given an additional polish with 0.06µm colloidal silica

NaOH (pH 9.8) suspension using a Buehler Vibromet II polisher for 4 hours to remove the surface

damage from previous mechanical polishing, and given a thin (~1nm) carbon coat to reduced the

effects of charging in the SEM chamber. Quantitative crystallographic orientation data was

collected using EBSD via a Nordlys I detector attached to the Phillips XL30 SEM (20kV

accelerating voltage, 20mm working distance, 70° tilt) at Curtin University, and processed using

Oxford Instruments Channel 5 (SP9) software following the procedures described in detail for

zircon 22
. Electron backscatter patterns (EBSPs) were collected (60 ms per frame, 4 frames noise

reduction) on a user defined grid (464 x 487 pixels, 1 .2µm spacing) and indexed using 8 detected

bands; Hough resolution of 65, and match units derived from zircon crystal parameters obtained at

1 atm23 (Mincryst record: Zircon [2])24 following detailed assessment of these parameters22. Some

domains of the grain yielded poor quality EBSPs and were unable to be indexed. The average

“mean angular deviation” for indexed points is 0.72°. Band contrast is a measure of the EBSP

pattern quality (i.e., EBSPs with faint Kikuchi bands yield low band contrast values), and values

were obtained from the contrast between the 8 detected bands and the background in a Hough

transformation of the EBSPs22



Slip systems were resolved from EBSD data using a simple geometric approach that relates the

geometry of low-angle tilt and twist boundaries and the dislocations responsible for their

formation21, 25-27. The map trace of the boundary and the crystallographic dispersion axis were used

to reconstruct the 3D boundary orientation, and in turn relate the boundary and dispersion axis

orientation to dislocation slip plane and slip direction by assuming end-member tilt boundary

models.

Sensitive high-resolution ion microprobe (SHRIMP).

Isotopic data were collected using the Sensitive High Resolution Ion Microprobe (SHRIMP II)

based in the John de Laeter Centre of Mass Spectrometry, Perth, Western Australia. The SHRIMP

methodology follows analytical procedure described elsewhere 13 . The filtered (O2
-) beam with

intensity between 2 and 3 nA was focused on the surface of samples into ~20 pm spot. Secondary

ions were passed to the mass spectrometer operating at a mass resolution (M/ ΔM) of ~5000. Each

analysis was preceded by a 2 minute raster to remove the Au coating. The peak-hopping data

collection routine consisted of five scans through the mass stations, with signals measured by an

ion counting electron multiplier. Pb-U ratios were calibrated using an empirical correlation between

Pb+-U+ and UO+-U+ ratios, normalised to the 564 Myr Sri-Lankan zircon CZ3 (Ref. 28). The 0.4 to

1.4% error obtained from the multiple analyses of Pb-U ratio on the standard during individual

SHRIMP sessions was added in quadrature to the errors observed in the unknowns. The initial data

reduction was done using the SQUID add-in for Microsoft Excel 29, and Isoplot30 was applied for

further age calculations.

The initial Pb correction of lunar samples is complicated by the highly radiogenic Pb compositions

of many lunar rocks 31, 320, which suggest a substantial early loss of Pb from the Moon. A systematic

change of 206Pb/204Pb during SHRIMP analyses of lunar zircon was used to suggest surface

contamination as a result of smearing of Pb from the surrounding sample over the zircon surface



during polishing 33
. However, recent study of 14 thin sections representing different breccia samples

from the Apollo 14 and 17 landing sites suggests that although most of the common Pb is a surface

contamination, its composition is most similar to the terrestrial Pb (Ref. 14). Therefore, U-Pb

analyses obtained for the zircon from the thin section 72215,195 were corrected using modern

Stacey and Kramers Pb (Ref. 34). Regardless, of the selection of common Pb for the correction,

very low proportion of 204Pb in the thin section 72215,195 makes the calculated ages insensitive to

the uncertainty in the common Pb.

Internal features of zircon from the breccia thin section 72215,195

The grain contains several domains, evident from differences in birefringence in cross

polarized light (Fig. 1a). These domains have significantly different concentrations of U and Th,

which has led to a different degree of self-irradiation damage across the grain. The most U- and Th-

rich domain, with U and Th concentrations of ~150 and ~100 ppm respectively and highest Th/U of

0.64 to 0.67 (Tab. 1), also shows very low cathodoluminescence (CL) emission and poor electron

backscatter diffraction (EBSD) pattern quality (Fig. 1). Several discrete domains that occur along

the edge of the grain, are moderately luminescent and have good EBSD pattern quality (Fig. 1b and

c), indicating that the lattice is crystalline. These domains are characterized by low U and Th

concentration (~30 to 50 ppm and ~10 to 20 ppm) and the lowest Th/U (0.34 to 0.42, with only one

analysis at 0.57). The rest of the grain is dominated by two domains with intermediate U and Th

content (~100 to 70 ppm and ~70 to 40 ppm), Th/U (0.56 to 0.60), CL intensity and EBSD pattern

quality (Fig. 1b and c). One of these domains records fine scale variations in birefringence (Fig. 1a,

insert), interpreted to reflect primary (magmatic) growth zoning with associated minor chemical

variation.

Crystallographic orientation analysis reveals that the zircon contains several deformation

bands that transect primary zoning and predate brittle fractures (Fig. 1d). Two orthogonal sets of

straight discrete and gradational low-angle boundaries accommodate ~12° misorientation across the



grain. The deformation bands are parallel to the crystallographic a-planes {010} of the zircon, have

misorientation axes parallel to the c-axis, and are geometrically consistent with formation by

dislocation creep associated with <100>{010} slip 21 . The deformation bands are geometrically

similar to dislocation microstructures reported in experimentally shocked zircon 35 . We interpret

these crystal-plastic deformation microstructures to have resulted from a significant impact, either

directly from impact shock, or during ductile flow directly following the impact. The deformation

bands appear to continue undeflected through the non-indexed, radiation-damaged areas of the

grain, which indicates that the orientation variation predates any significant mechanical weakening

from radiation damage in the grain, and therefore occurred early in its history. Crosscutting

relationships between the deformation bands and the major chemical domains, identified within the

grain, also demonstrate that the observed variation in U concentration and Th/U predate

deformation and is the primary growth feature of this zircon.
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1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

79
86
31

151
106
105

87
98
84
90
49
52
78
76
84

151
83
79
83

159
87
86
83
86
79
92

Table1. U-Pb SHRIMP data for the lunar zircon grain from the breccia thin section 72215,195

_________________________________________________________________________________

Spot	 U	 Th	 Th	 204Pb 	 erra 207Pb err	 208Pb err 206Pb err 238Ub err
U	 206Pb 	206Pb 	206Pb 	238U 	206Pb *

(ppm) (ppm)

207Pb* err discc 207Pb*
206Pb *
	

206Pb*
(%) Age (Ma)

0.5
0.9
0.7
0.5
0.4
0.3
0.6
0.2
0.3
0.2
0.5
0.8
0.2
0.4
0.5
0.2
0.2
0.3
0.3
0.2
0.4
0.3
0.3
0.3
0.6
0.9

44 0.57
48 0.57
10 0.34
94 0.65
61 0.59
61 0.60
48 0.57
53 0.56
46 0.57
49 0.56
20 0.41
20 0.40
44 0.58
42 0.57
46 0.57
94 0.64
46 0.57
45 0.59
46 0.57

103 0.67
48 0.57
48 0.58
47 0.58
47 0.56
45 0.59
50 0.57

0.000127
0.000086
0.000257
0.000045
0.000049
0.000040
0.000060
0.000084
0.000058
0.000064
0.000031
0.000065
0.000028
0.000010
0.000004
0.000006
0.000019
0.000021
0.000042
0.000009
0.000008
0.000016
0.000032
0.000019
0.000017
0.000009

27 0.5504
52 0.5531
34 0.5335
33 0.5400
39 0.5504
35 0.5592
37 0.5638
24 0.5442
39 0.5645
32 0.5440
46 0.5326
43 0.5462
62 0.5412
53 0.5461
59 0.5598
86 0.5460
46 0.5479
46 0.5503
32 0.5511
74 0.5442
43 0.5574
63 0.5541
27 0.5552
61 0.5591
55 0.5582
53 0.5634

0.1422 0.9
0.1452 0.9
0.0925 1.7
0.1624 0.6
0.1499 0.7
0.1507 0.6
0.1413 0.7
0.1390 0.8
0.1393 0.8
0.1386 0.7
0.1024 0.8
0.1018 0.8
0.1440 0.6
0.1425 0.6
0.1425 0.6
0.1597 0.4
0.1405 0.6
0.1457 0.6
0.1395 0.7
0.1652 0.4
0.1391 0.5
0.1444 0.7
0.1431 0.7
0.1403 0.7
0.1459 0.7
0.1390 0.8

1.005 2.3
1.009 2.2
0.969 2.6
0.997 2.2
0.986 2.5
0.980 0.9
1.015 0.9
0.996 0.5
0.997 2.2
0.993 0.6
0.951 1.1
1.010 1.1
0.968 1.0
0.964 1.0
0.999 1.0
0.972 0.9
0.978 1.0
0.989 1.0
0.980 1.0
0.972 0.9
1.004 1.0
0.984 1.4
1.016 1.4
1.014 1.4
0.986 1.4
0.991 1.4

0.998 2.3
0.993 2.3
1.037 2.6
1.004 2.2
1.015 2.5
1.021 0.9
0.986 0.9
1.005 0.5
1.004 2.2
1.008 0.6
1.052 1.1
0.991 1.1
1.034 1.0
1.037 1.0
1.001 1.0
1.029 0.9
1.023 1.0
1.011 1.0
1.021 1.0
1.029 0.9
0.997 1.0
1.016 1.4
0.985 1.4
0.987 1.4
1.015 1.4
1.009 1.4

0.5497 0.5 -2
0.5526 0.9 -2

	

0.5321 0.7
	

0
0.5397 0.5 -2
0.5501 0.4 -1

	

0.5590 0.3
	

0
0.5635 0.6 -2
0.5438 0.2 -2
0.5642 0.3 -1
0.5437 0.2 -2

	

0.5324 0.5
	

1
0.5459 0.8 -3

	

0.5410 0.2
	

0
0.5460 0.4 0

	

0.5598 0.5	 -1

	

0.5459 0.2
	

0

	

0.5478 0.2
	

0

	

0.5501 0.3	 -1

	

0.5509 0.3
	

0

	

0.5441 0.2
	

0
0.5573 0.4 -2
0.5540 0.3 -1
0.5550 0.3 -3
0.5590 0.3 -2

	

0.5581 0.6
	

0
0.5634 0.9 -1

4380±7
4388±14
4333±10
4354±8
4381±5
4405±4
4417±9
4364±3
4418±4
4364±4
4334±7
4370±12
4357±4
4371±5
4407±8
4370±3
4375±3
4382±4
4383±4
4365±3
4400±5
4392±4
4395±4
4405±5
4403±9
4416±13



Table1. (continued)

Spot	 U	 Th
	

Th	 204Pb 	 erra 207Pb err	 208Pb err 206Pb err 238Ub err	 207Pb* err discc 207Pb*
U 206	 206 	 206Pb	 23 8U	 206Pb *	 206 *	 206

(ppm) (ppm)	 (%) Age (Ma)
_________________________________________________________________________________________________________

27
	

78	 44 0.58 0.000026 47 0.5517 0.3 0.1443 0.7 1.010 1.4 0.990 1.4 0.5516 0.3 -3	 4385±4
28
	

91	 49 0.56 0.000015 83 0.5546 0.4 0.1375 0.8 0.971 1.4 1.030 1.4 0.5545 0.4	 0	 4393±6
29
	

73	 41 0.58 0.000031 55 0.5427 0.3 0.1449 0.7 0.968 1.4 1.034 1.4 0.5426 0.3 	 0	 4361±4
30
	

76	 42 0.58 0.000043 37 0.5458 0.3 0.1440 0.7 0.965 1.4 1.037 1.4 0.5456 0.3 	 0	 4369±4
31
	

85	 48 0.58 0.000012 81 0.5624 0.6 0.1433 0.7 1.008 1.4 0.992 1.4 0.5623 0.6 -2	 4413±9
32
	

85	 48 0.58 0.000042 37 0.5581 0.3 0.1435 0.7 1.005 1.4 0.996 1.4 0.5579 0.3 -2	 4402±4
33
	

87	 49 0.58 0.000050 27 0.5529 0.3 0.1454 0.9 1.019 1.4 0.983 1.4 0.5527 0.3 -3	 4388±4
34
	

80	 46 0.59 0.000063 23 0.5497 0.3 0.1477 0.7 1.000 1.4 1.002 1.4 0.5493 0.3 -2	 4379±4
35
	

93	 53 0.59 0.000013 77 0.5535 0.3 0.1471 0.6 1.008 1.3 0.992 1.3 0.5535 0.3 -2	 4390±5
36
	

100	 54 0.56 0.000010 80 0.5568 0.3 0.1374 0.7 1.009 1.3 0.991 1.3 0.5568 0.3 -2	 4399±4
37
	

119	 69 0.60 0.000018 43 0.5584 0.2 0.1492 0.6 0.996 1.3 1.004 1.3 0.5583 0.2 -1 	 4403±3
38
	

51	 21 0.42 0.000007 99 0.5442 0.9 0.1096 1.1 0.990 1.5 1.010 1.5 0.5441 0.9 -2	 4365±13
39
	

35	 14 0.41 0.000085 44 0.5326 0.5 0.1075 1.4 1.001 1.6 1.000 1.6 0.5321 0.5 -3 	 4333±7
40
	

41	 16 0.40 0.000092 26 0.5342 1.1 0.0986 1.2 1.014 1.5 0.988 1.5 0.5337 1.1 	 -4	 4337±16
41
	

84	 46 0.57 0.000074 30 0.5318 0.5 0.1396 0.8 0.999 2.2 1.002 2.2 0.5314 0.5 -3	 4331±8

a all errors are % 1 sigma
b 206Pb* is radiogenic 206Pb
c % discordance


